arc の日記

はてなダイアリーから引っ越してきました。さらに新しい記事は https://junkato.jp/ja/blog/ で書いています。

MIT原子力理工学部による改訂版・福島第一原発事故解説

MIT研究者Dr. Josef Oehmenによる福島第一原発事故解説が反響を呼んでいますが、これを執筆したOehmen氏は原子力の専門家でなく、内容が必ずしも正確でないことが指摘されています。そこで、MITの名前で広がってしまった責任を取るかたちでMIT原子力理工学部(NSE)の学生有志が学部の協力を受けてmitnse.comを立ち上げ、改訂版を公開しました。

これをGoogle Docsを使って複数人で協力して和訳し、さらに注をつけたので、以下に掲載します。翻訳と校正の過程はGoogle Docs上の記事を直接見ればお分かりいただけると思います。

注意: この記事は福島第一原発の最新の状態を解説したものではありません。福島第一原発事故関連で日本語の良質な記事・ニュースソースをご覧ください。また、この記事のほかにも様々な記事が翻訳済みです。翻訳記事の一覧はMIT原子力理工学部による原子力発電の解説(翻訳)にあります。

目次

前書き

この記事はもともとMorgsatlargeで書かれたものです。記事の内容はMIT原子力理工学部が運営、維持しているmitnse.comに取り込まれました。NSEのメンバーは、元記事を編集してきた他、今後はコメントに返信したり、情報を更新・追記したりしていく予定です。詳しくはmitnse.comをご覧ください。

注意: 元記事のタイトル(Why I am not worried about Japan's nuclear reactors.)は当サイト著者らの意向に沿ったものではないことに注意してください。著者らは状況を注視しており、進展があるごとに事実を紹介していきます。元記事を完全に否定したり消したりしなかったのは、福島原発で起きていることの大まかな背景を説明するための、よい出発点になると考えているからです。

今何が起こっているかを説明する前に、少し基礎をおさらいしましょう。

福島原発の構造について

福島の原発はBoiling Water Reactor (BWR)と呼ばれるタイプで、沸騰した水の蒸気によってタービンを回すことによって発電する仕組みです。核燃料が水を熱し、水が沸騰して蒸気を作り、そして蒸気がタービンを回すことで電気を作ります。蒸気はその後冷やされ、液体の水に戻って、また核燃料で熱せられるのです。この機構はおおむね285℃で作動します。(訳注:下図のように水が液体=青気体=赤の状態で循環しています。)

http://cdn-ak.f.st-hatena.com/images/fotolife/a/arc_at_dmz/20110317/20110317001522_original.jpg

http://www.tepco.co.jp/nu/knowledge/system/index-j.html

核燃料には酸化ウランが用いられます。酸化ウランは2800℃近い高い融点を持つセラミック燃料で、ペレットと呼ばれる直径高さ共1cm程度の円柱状に焼き固められたものが用いられます。ペレットは一直線にまとめられ、燃料被覆管内に堅く封じられます。(訳注:下図で手のひらに載っている黒いものがペレット、銀色の長い棒が燃料被覆管です。)この燃料被覆管はジルカロイ(ジルコニウム合金)製で、1200℃で溶融します。この管の両端をとじたものが燃料棒と呼ばれています。燃料棒は束ねられ、数百本で一つの炉心となります。(訳注:Wikipediaによれば、正確には、BWRでは燃料棒を百本弱束ねたものが燃料集合体、燃料集合体をさらに数百本束ねたものが炉心と呼ばれるそうです。)

http://upload.wikimedia.org/wikipedia/commons/a/ae/Nuclear_fuel_pellets.jpeg

燃料棒 - Wikipedia

ペレット状の固体燃料(酸化物系セラミック複合材)は核分裂の過程で生じる放射性核分裂生成物を閉じ込める一つ目の防壁となります。ジルカロイによる被覆管は放射性燃料を炉の他の部分とわかつ二つ目の防壁です。

そして、炉心は圧力容器の中に配置されます。圧力容器は鋼鉄製の厚い容器で、内部の圧力は作動時7MPa(だいたい1000psi─訳注:重量ポンド毎平方インチ、日本人には馴染みの薄い単位ですね。)程度ですが、事故が起きたときの高圧に耐えられるよう設計されています。この圧力容器は、放射性物質の拡散を防ぐ三つ目の防壁です。

圧力容器、パイプ、冷却剤(水)を含むポンプは、原子炉における主要なループ構造を形成し、格納容器に格納されています。この構造が、放射性物質の拡散を防ぐ四つ目の防壁です。格納容器は空気が漏れないように密閉されており、鋼鉄とコンクリートからなる大変厚い構造体です。この構造は「仮に炉心溶融が起きてしまったとしても炉心を構造内部に完全に永遠に封印する」というたった一つの目的のために設計され、建造され、テストされています。封印をさらに完全なものにするために、格納容器の周囲は大量の厚いコンクリートで覆われており、これは第二の格納容器と呼ばれています。(訳注:五つ目の防壁に相当します。)

これまでにご紹介した主たる格納容器と第二の格納容器は原子炉建屋に格納されています。建屋は外側の殻であり、外界の天候の影響をシャットアウトし中に何もいれないようにしているものです。(これは福島の原発において爆発で損傷を受けた部分です。詳細は後述します。)

核反応の基礎

http://cdn-ak.f.st-hatena.com/images/fotolife/a/arc_at_dmz/20110317/20110317004836_original.jpg

ウラン燃料は熱を中性子誘導による核分裂により生み出します。ウラン原子はこの核分裂によってより軽い原子(つまり核分裂生成物)に変化します。この過程で熱とより多くの中性子(原子を構成する粒子の一つ)が放出されます。これらの中性子の一つが別のウラン原子に衝突したとき、その原子が分裂し、より多くの中性子を生成し、これらのプロセスが同様に続いていきます。この一連の過程は原子核連鎖反応と呼ばれています。

http://cdn-ak.f.st-hatena.com/images/fotolife/a/arc_at_dmz/20110317/20110317011511_original.jpg

通常の状態、すなわち原子炉がフルパワーで稼働している間は、炉心内部の中性子数が安定し(すなわち同じ個数のままで)、その原子炉は臨界状態となります。

非常に大事なのが、原子炉内部の核燃料は決して核爆弾のように核爆発したりしない、という点です。チェルノブイリでは、圧力が極端に高まり、水素爆発が起きて全ての構造が崩壊したことによって原子炉が爆発し、溶融した炉心の物質が周囲に飛散したのです。注意しておきたいのは、チェルノブイリ原発が周囲への防壁としての格納容器を持っていなかったことです。日本でチェルノブイリのような事態が起きてこなかった、そして、起きないであろう理由について、以下で議論します。

原子核連鎖反応を制御するために、原子炉運転員は制御棒を使います。制御棒は中性子をよく吸収する原子であるホウ素でできています。BWRの通常の操業時、制御棒は臨界状態での連鎖反応を維持するために使われます。また、制御棒は原子炉を止める、すなわちパワー100%の状態からパワー7%の状態(余熱、すなわち崩壊熱)まで落とすのにも用いられます。

余熱は核分裂生成物の放射性崩壊により生じます。放射性崩壊とは、核分裂生成物が放射線アルファ線、ベーター線、ガンマ線中性子線)を放出しながら安定化する過程のことをいいます。原子炉内部では、セシウムヨウ素を含む多くの核分裂生成物が生じます。余熱は、原子炉停止後から時間をかけて冷やして取り除かなくてはなりません。この冷却システムは、燃料棒がオーバーヒートすることによって、放射性物質の漏洩に対する防壁として働かなくなるのを防ぐ役割を担っています。原子炉内部の崩壊熱を取り除く冷却システムを維持することは、津波の被害をうけた日本の原子炉において即座になされなければならない課題です。

これらの核分裂生成物の多くがものすごい速さで熱を発生して崩壊していきます。たとえば「R-A-D-I-O-N-U-C-L-I-D-E」(放射性核種)と紙に書きつけている間にも、それらは無害になります。セシウムヨウ素ストロンチウム、アルゴンといった他の物はよりゆっくり崩壊します。(訳注:これが、原子炉の外でセシウムヨウ素ばかりが検出されている=それ以外の重い生成物が検出されない理由です。ものすごい速さで崩壊する原子は原子炉の外に出る前に崩壊してしまうため、観測されません。)

2011年3月12日の福島で起きたこと

主な事実は次のようにまとめられます。日本を襲った地震原発建設時に想定された最も酷い地震よりも数倍強いものでした。(マグニチュードは対数的に効いてきます;例えば8.2と今回の8.9の差は0.7倍ではなく5倍です訳注:元記事の誤りと思われます。単純に差を取ると8.9-8.2=0.7ですが、地震が及ぼすエネルギーの差を得るには10の累乗を計算する必要があります。元記事は10の0.7乗を計算して約5を得ているようですが、正しくは10の0.7×1.5乗を計算する必要があり、エネルギー比は11.2201…です。詳しくはWikipediaの記事をどうぞ。

地震が襲った時、原子炉はすべて自動的に停止しました。地震が起きて数秒以内に制御棒が炉心に挿入され、核分裂連鎖反応は止まりました。いまのところ、冷却システムによって通常の稼働条件下での全出力熱負荷の約7%にあたる残留熱を取り除く必要があります。

地震により原子炉の外部電力供給が破壊されました。これは外部電源喪失と呼ばれ、原発にとって対応が難しい事故です。原子炉とそのバックアップシステムはこの種の事故に対応するために、非常用電源システムを持つことで冷却ポンプの動作を保つように設計されています。外部電源を喪失した場合、もちろん発電所は停止していますので、発電所自ら発電して冷却システムに給電することはできません。つまり冷却ポンプが使えなくなってしまうのです。

最初の1時間の間に、多重の非常用ディーゼル発電機からなる最初の一組が稼働し、必要な電気を供給しました。しかしながら、史上最大規模の津波によってこれらのディーゼル発電機が水浸しにしなり、故障しました。(訳注:このあたりの流れについては当記事に2011/3/17 16:28についたs.yさんのコメントが分かりやすいです。)

原発設計の基本的な考え方の一つは多層防護です。つまり、いくつかのシステムが落ちても、深刻な大事故に耐えうるように設計されています。一度にすべてのディーゼル発電機を壊す大規模な津波はそのような一つの想定ですが、3/11の津波はさらにそういった想定を上回るものでした。こんなこともあろうかと、技術者はさらなる防衛線を用意していました。原子炉のシステム全体を、密閉可能なように設計した格納容器の中に配置したのです。

今回、ディーゼル発電機が津波によって故障した際、原子炉運転員は非常用バッテリ電力に切り替えました。このバッテリは炉心を8時間にわたって冷却する電力を供給するバックアップシステムのひとつであり、そしてバッテリは役目を果たしました。

8時間後、バッテリが干上がり、残留熱をそれ以上除去することができなくなりました。この時点で運転員は冷却損失時のために用意された緊急手順にとりかかりました。これらの手順は、多層防護の考え方に沿って予め定められています。驚くかもしれませんが、これらの緊急手順は運転員の日々の訓練の一部に組み込まれています。

この時点で、人々は原子炉内部で炉心溶融が起きる可能性について議論を始めました。もし冷却システムが回復しなければ炉心は数日後に溶融し、格納容器の中に溶け出すと予想されるからです。「炉心溶融」という言葉は曖昧な定義を持ちます。燃料破壊という言葉のほうが燃料棒の被覆管(ジルコニウム)が欠損したことを表すには適しているでしょう。これは燃料が溶融する以前に起こり、機械的破損、化学的破損ないしは熱破損が原因となります。(過度の圧力、過度の酸化、過度の熱)。

さて、実際にはこの時点で起きている現象は溶融からはほど遠く、主要な課題は

  • 発熱を続けている炉を管理下に置くこと
  • そして、可能な限り長く燃料被覆管を無傷に保ち、中から放射性物質が漏れ出さないようにすること

でした。

炉心の冷却は重要なことなので、原子炉は多くの独立した、複数の冷却システム(原子炉冷却材浄化設備、崩壊熱除去、炉心隔離冷却システム、非常用液体冷却システム、緊急炉心冷却装置を構成するその他のシステム)を有しています。そのうちのどれがいつ故障したのかは現時点では明らかではありません。

今回は電力喪失によって冷却能力のほとんどが失われていました。そのため、運転員は残された冷却システムだけで出来る限り熱を除去しなくてはなりませんでした。しかし熱生成が熱除去のペースを上回れば温度が上昇し、水は沸騰してどんどん気化して圧力が上昇し始めます。そうなると、最優先すべきなのは燃料棒の温度を1200℃以下に保ち燃料棒の安全性を維持しながら圧力を管理できる範囲のレベルに保つことです。システムの圧力を管理できるレベルに保つために、蒸気(および格納容器内に存在する他のガス)は時々放出しなければなりません。このプロセスは事故時に圧力が対処できるレベルを超過しないように抑えるのに必須であり、原子炉圧力容器と格納容器はいくつかの圧力開放バルブを備えるよう設計されています。したがってこの時点から、圧力容器と格納容器を無傷で維持するために、運転員は時々蒸気を放出(訳注:ここにvent=ベントという動詞が使われています。官房長官の記者会見などで何度も聞いた単語ですね。)して、圧力を制御し始めました。

上述のように蒸気と他のガスが放出されました。それらのガスの一部は放射性核分裂生成物ですが、ごく少量しか含まれていません。作業員は放射性ガスを統制のとれたやり方(フィルタと気体洗浄装置を通したごく少量)で環境中に放出を始めたので、サイト上の作業員にさえ、安全上の重大なリスクを与えませんでした。この手順はその放出量が極めて微量であり、逆に蒸気を放出ずに格納容器の健全性を損なうような潜在的なリスクと比較した場合には、妥当なものだと言えます。

この間に、可動式の発電機が搬入され、ある程度の電力が回復しました。しかしながら、原子炉に注水されるよりも多くの水が沸騰し、排出されたため、残存している冷却システムの冷却能力が奪われていきました。蒸気を排出するプロセスにおいて、水位は燃料棒の最上部よりも低いレベルまで低下したかも知れません。いずれにせよ、いくつかの燃料棒被覆管の温度は、1200℃を超過し、ジルコニウムと水の間の反応(訳注:下図)を引き起こしました。この酸化反応は水素ガスを生成し、水素ガスが放出された混合蒸気と混ざり合いました。

[http://cdn-ak.f.st-hatena.com/images/fotolife/a/arc_at_dmz/20110317/20110317031335_original.jpg:image]

これは想定されたプロセスですが、運転員は燃料棒の正確な温度や正確な水位を把握できなかったため、生成された水素ガスの量を知ることは出来ませんでした。水素ガスは極めて引火しやすく、十分な量の水素が空気と混ざると、空気中の酸素と急速に反応して爆発を生じます。排出プロセスのどこかの段階で、十分な量の水素が格納容器の内部に貯まり(格納容器の内部には空気はありません)、そして水素が空気中に排出されたときに爆発が発生しました。爆発は格納容器の外部で発生しましたが、原子炉建屋(防御機能はありません)の内部および周辺です。これに続いて同様の爆発が3号炉でも発生しました。爆発は原子炉建屋の天井と壁の一部を破壊しましたが、格納容器や圧力容器にはダメージを与えませんでした。これは予想外の事態でしたが、爆発は格納容器の外で発生し、原子力発電所の安全構造に危険を及ぼすものではありませんでした。

今回は、いくつかの燃料棒被覆管が1200℃を超えたため、ある程度の燃料損傷が発生しました。核物質それ自体は未だ無傷でしたが、それを覆うジルコニウムの殻は溶けて機能を失い始めました。この時点で、放射性核分裂生成物(セシウムヨウ素、等)が一部混ざりはじめました。少量の放射性物質セシウムヨウ素)が大気中に放出され、蒸気中に検出されたことが報告されています。

原子炉の冷却が充分に行われなかった結果、原子炉内の水は蒸発し、水量は減少していきました。技術者は燃料棒の水面からの露出を避けるために海水(中性子吸収体としてホウ素を添加)を注入することを決めました。原子炉は停止していましたが、原子炉が確実に停止した状態を維持するよう念のためにホウ酸が加えられました。また、このホウ酸は、水中の残留ヨウ素の一部を逃げられないよう捕まえる副次的な効果を持ちます。

冷却システムに利用される水は蒸留され脱塩された水です。純水を利用する理由は通常運用において冷却水による腐食の可能性を抑えるためです。海水注入は、事故から復旧するときの浄化処理をより困難にしますが(訳注:現状では廃炉確定なのでいらぬ心配だろう)、炉心を冷却することはできます。

この海水注入プロセスによって、燃料棒の温度がダメージが生じないレベルまで下がりました。原子炉は長い間停止されていたため、残留熱は極めて低いレベルまで低下しており、プラント内の圧力も安定し、放出作業ももはや必要なくなりました。

記事掲載後の更新

3/14 8:15pm ESTの更新

東電のプレスリリースによれば現在1号機と3号機は安定した状態にありますが、燃料への損傷の程度は不明です。現地時間3/14 2:30pmの時点で福島第一原発正門における放射線の観測値が231μSv(マイクロシーベルト、2.31mrem=ミリレムに相当)まで下がっています。

3/14 10:55pm ESTの更新

2号炉で起こったことに対する詳細は未だ流動的です。2号炉に関して起こったことに関する後続の記事(訳注:日本語訳が済んでいません。)はより最新の情報を含んでいます。放射能レベルは増加していますが、どのぐらいのレベルまで達したかは不明です。

訳者後書き

この記事は、Google Docsを使って複数人で同時に翻訳と校正を進めました。よく打った文字が消えたり日本語が打てなくなったりしますが(笑)、それでも実用的な共同作業ツールとして機能しているWebアプリに、プログラマとして改めて感心しました。

一緒に翻訳を進めた匿名ユーザの方々、翻訳だけでなく図表を作ってくださった @hoshimi_etoile さん、元記事翻訳者でもある @LunarModule7 さん、また、校正してくれた平山さんに感謝します。後続記事の下訳を作っていただいた @tyamadajp さんにも感謝します。こちらは周知の話が多そう、とのことですが、機会を見てまとめ直してアップします。次の記事に掲載しました。

更新履歴
  • 11/03/17 11:30 表記の統一、細かな誤訳の修正
  • 11/03/17 11:50 福島で起きたことの冒頭にマグニチュードについての説明を追加
  • 11/03/17 18:55 冒頭で当記事が最新の情報をカバーしたものでないことを明記、不適切な訳注を削除、訳語を変更
  • 11/03/17 19:40 マグニチュードとエネルギーの関係が誤っていたので訳注を追記